Cocaine addiction is a global public health issue with more than 1.5 million users in the United States\(^1\). Cocaine has a high rate of relapse and there are no FDA-approved pharmacotherapies to treat cocaine addiction\(^5\). Thus, it is vital to discover and develop innovative pharmacological treatments for this brain disorder.

Glucagon-like Peptide-1 (GLP-1) is an incretin hormone produced both peripherally and centrally\(^6\). Endogenous GLP-1 stimulates insulin secretion, reduces blood glucose levels, and controls normal food intake\(^2\). GLP-1 receptors are expressed widely throughout the brain including the VTA and nucleus accumbens, two brain regions known to mediate the reinforcing effects of both drugs of abuse and natural rewards\(^1\). Importantly, GLP-1 receptor agonists are FDA-approved for treating type II diabetes and obesity\(^2\). Recent studies suggest that peripheral administration of a GLP-1 receptor agonist reduces cocaine self-administration and cocaine-induced conditioned place preference (CPP)\(^2,5,6\). However, the role of these receptors in the reinstatement of cocaine-seeking behavior, an animal model of relapse, remains unclear.

Since GLP-1 regulates addiction-like behaviors\(^6\), we hypothesized that peripheral administration of a GLP-1 receptor agonist would attenuate reinstatement of cocaine seeking in rats.

METHODS

Self-administration

- Extinction
- Reinstatement

21 days

5 – 7 days

0.25mg/infusion

RESULTS

Figure 1: Systematic administration of a GLP-1 receptor agonist reduces cocaine seeking during reinstatement test sessions. (a) Peripheral administration of Fluoro-Exendin-4 (0.25 µg/kg, i.p.) prior a cocaine priming injection reduces active lever responses during reinstatement test sessions (n=15). (b) Peripheral administration of Fluoro-Exendin-4 reduces active lever responses dose-dependently (n=9). There was no effect on inactive lever presses. Statistical analysis was performed using a Two-way ANOVA test. *p < 0.05 compared to vehicle (Tukey’s HSD).

Colocalization of Fluoro-Exendin-4 with neurons and astrocytes in the VTA and nucleus accumbens

Figure 2: Systematic administration Fluoro-Exendin-4 penetrates the brain and colocalized with neurons and astrocytes in the VTA and nucleus accumbens. (a, c, d) Fluoro-Exendin-4 stained in green, GFAP stained in red; NeuN stained in magenta and DAPI stained in blue. (b) Fluoro-Exendin-4 stained in green, TH stained in red.

ACKNOWLEDGEMENTS

I would like to thank my mentor Dr. Heath D. Schmidt and everyone in the Schmidt Lab at University of Pennsylvania. I would also like to acknowledge the Summer Undergraduate Research Program (SURF) and the SURF Director, Dr. Amanda Diaz. This work was supported by the NIH NP-ENDORSE Neuro-ID Program at the University of Puerto Rico, Río Piedras Campus (1R25MD009372-01).

REFERENCES

1. 2014 National Survey on Drug Use and Health

ACKNOWLEDGEMENTS

I would like to thank my mentor Dr. Heath D. Schmidt and everyone in the Schmidt Lab at the University of Pennsylvania. I would also like to acknowledge the Summer Undergraduate Research Program (SURF) and the SURF Director, Dr. Amanda Diaz. This work was supported by the NIH NP-ENDORSE Neuro-ID Program at the University of Puerto Rico, Río Piedras Campus (1R25MD009372-01).