Effect of Gut Microbiota on the Enteric Nervous System of the Sea Cucumber

Sonya J. Malavez Cajigas, Julio M. Cuevas Cruz, Paola I. Rodríguez Sánchez, Lymarie Díaz-Díaz, Omar Delannoy- Bruno, José E. García Arrarás1

University of Puerto Rico, Río Piedras Campus Department of Biology

Microbiota

- Symbiosis (mutualistic)
- All organisms have mutualistic relations.

Gut Microbiota

- Crucial in essential physiological processes involved in homeostasis for different organisms.
- Also related to immune system and health in general.
- Responds to changes or alterations.

Gut Microbiota: the unknown organ that maintains our health

Drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling

Seung Chul Shin et al.

Gut Microbiota Are Related to Parkinson's Disease and Clinical
Phenotype
Scheperjans, Filip, et al.

Holothuria glaberrima

Deuterostomes

Holothuria glaberrima

Intestinal Regeneration

First week Second week Third week

Nervous System Regeneration

Nervous System Regeneration

Objective

Determine the effect gut microbiota on the regeneration of the intestinal tract of the sea cucumber Holothuria glaberrima.

- Antibiotic usage
- Measuring blastema size and regenerated intestine length
- Immunohistochemical analysis: RN1

Antibiotic Treatment				
Control Group (Artificial Seawater)	Penicillin/ Streptomycin (100 μ g/mL) and Kanamycin (100 μ g/mL)	Penicillin/ Streptomycin (100 μ g/mL) and Erythromycin (20 μ g/mL)	Penicillin/ Streptomycin (100 μ g/mL) and Neomycin (100 μ g/mL)	Penicillin/ Streptomycin (100μg/mL)
1L Water	1L Water 10mL Pen/Strep 1mL Kanamycin	1L Water 10mL Pen/Strep 1mL Erythromycin	1L Water 10mL Pen/Strep 10mL Neomycin	1L Water 10mL Pen/ Strep

• 4 animals per group Total number of animals: 20

Antibiotic treatment: 10 days post evisceration

Measurement of Intestine Length

Anterior Lumen Small (Intestine)

Whole Intestine

Posterior Lumen Large (Intestine)

Results: Measurement of Intestine Length

Effect of Antibiotics on Lumen Formation

Measurement of Blastema Size

Control vs. Kanamycin

Control Kanamycin

Control vs. Erythromycin

Control

Erythromycin

Results: Measurement of Blastema Size

Effects of Antibiotics on the Area of Blastema

Comparison with Previous Experiments

Effect of the Antibiotics in Rudiment Size (%)

Comparison with Previous Experiments

Observations

- As observed Kanamycin has no effect on lumen formation; however, there was an apparent effect on animals treated with Erythromycin.
- As seen in previous results, antibiotics have a negative effect on rudiment size.
 - Animals treated with Kanamycin showed a significant reduction in the size of the blastema.
- Recently, we have observed a smaller rudiment in animals treated with Kanamycin or Erythromycin.

Immunohistochemical analysis

Control

Immunohistochemistry

Control

Kanamycin

Immunohistochemistry

Control

Erythromycin

Observations of RN1 Marker on Previous Experiments

- Less fibers between 5 and 7 dpe and by 10 dpe no nerve fibers or few in rudiment.
- By 14 dpe re-innervation in the rudiment started.

Observations

- Animals treated with Kanamycin and Erythromycin showed more nervous fibers in the blastema.
- Animals in the control group has more neuron-like cells.

Conclusions

- Our results suggest that the intestinal microbiota could be involved in the regenerative process.
- It appears that antibiotics delay both processes: enteric nervous system and tissue regeneration.

Questions