

PKC γ actions related to mGluR5 within NAc shell on environment elicited cocaine conditioning

Mentor: Carmen S. Maldonado-Vlaar, Ph.D.

Gian Carlo Molina Castro

NIH-ENDURE Trainee

NeuroID Program

University of Puerto Rico, Rio Piedras Campus

National Institutes of Health

Drug Addiction

- Principal Components:
 - Seeking and taking the drug compulsively
 - Losing the control of intake the drug
 Developing a negative emotional response when the drug is not present.

Changes in neurotransmission systems within specific brain structures may induce drug reward effects associated with drug dependence.

Figure 1: Mesolimbic Dopamine Reward Pathway by Addictive Drugs

Koob, G.F., Sanna, P.P., Bloom, F.E. (1998). Neuroscience of Addiction. Neuron, Vol. 21, 467-476. The Neurobiology of Drug Addiction. (2007) Section 7: Summary: addictive drugs activate the reward system via increasing dopamine neurotransmission. National Institute on Drug Abuse. NIH.

Cocaine

Psychostimulant

Drug Abuse Potential

Mesolimbic Dopamine System

Nature Reviews | Neuroscience

Figure 2 (above): Neurochemical neurocircuits in drug reward. Figure 3 (right) : Neurochemical neurocircuits in drug reward within Nucleus accumbens and Ventral tegmental area

Russo, S.J., Nestler, E.J. (2013) The brain reward circuitry in mood disorders. Nature Reviews Neuroscience 14, 609-625.

Nature Reviews | Neuroscience

Metabotropic glutamate receptor 5

mGluR5

All mGluRs are located within NAc subregions (core or shell).

Group I of mGluRs are critical in cocaine addiction.

If the mGluR5 stimulation is reduced, the drugseeking behavior will be inhibited. mGluR5 stimulation activates PKC.

Kenny, P., Markou, A. (2004). The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacological Science 25:265-272 Schmidt, H., et. al. (2015). Group I metabotropic glutamate receptor-mediated activation of PKC gamma in the nucleus accumbens core promotes the reinstatement of cocaine seeking. Addiction Biology, 20(2):258-296.

Protein Kinase C (PKC)

Figure 4: mGluR5 molecular pathway.

Examine the effect of blockade of PKC γ in the expression of cocaine conditioning.

Methods

Animal Model

Male Sprague Dawley Rats (250g – 275g) from PSM. A total of 22 rats were used.

Cannulae within the NAc shell were implanted in rats. Recovery period: 4 days

Figure 5: Sprague Dawley Rats. The University of Texas at Austin. María Elena Reverón Laboratory. Figure 6: Stereotaxic. Kopf Instruments. Model 900 Small Animal Stereotaxic Instrument.

Cocaine Conditioning in Locomotor Activity Chambers

Microinfusion (0.5 µ L/min) (D1 to D5)	 Daily infusion directly to NAc shell 10 µM Ro 31-8220 mesylate (PKC inhibitor) Saline 0.9% 	Figure 7: Harvard Pump 33
Locomotive chambers (D1 to D5)	 Exposed to a specific environment Visual (black) and olfactory (orange) cues Systemic intraperitoneal cocaine injections (15mg/kg) 	Dual Syringe Pump. Instechlabs.
Test day (D7)	• Animals were placed in the chambers with the environment cues, but without any pre-treatment.	Figure 8: TruScan Photobeam Activity System

Data analysis

After D7, rats were sacrificed and their brains were removed and frozen for further histological analysis (cannulae verification).

Auton	natic P	formula					
		Addition of T	otal Hours Ex	perimental Gr	oup (1.5 Hou	rs) in Centim	eters
		Day 1	Day 2	Day 3	Day 4	Day 5	Day 7
		Total .1.5 ho	urs				
UB 3		18730.468	6498.082	11569.7	18759.932	18817.59	8735.568
UB 4		11643.106	10298.176	15731.49	19335.766	13172.44	8052.722
UB 6		4725.924	5134.864	16817.086	15167.356	15046.95	5483.352
UB 10		3042.92	4283.456	8795.004	10773.918	14465.046	4875.270
UB 11		14117.066	20987.004	22204.934	20997.926	22044.66	6061.964
UB 12		8180.578	3890.264	17492.726	21922.486	28561.03	5857.748
TZ 1		17311.37	5668.772	9564.37	7693.152	10394.188	6674.35
TZ 2		5245.862	4994.148	31126.684	17448.784	22545.04	8235.442
TZ 4		6677.66	4263.39	16245.332	16274.542	7588.758	5171.94
TZ 9		6049.518	3678.428	6620.256	9031.986	13081.254	6445.504
TZ 10		4514.596	3995.674	4808.474	11585.448	6284.468	1939.54
TZ 13		6825.234	10493.756	12221.972	18204.18	15567.66	6765.79
	AVG	8922.02517	7015.50117	14433.169	15599.7063	15630.7578	6192.43533
	SEM	1518.38453	1437.70091	2098.60454	1373.35774	1866.7522	524.112782
Autor	natic P	formula					
	Addition of Total Hours I			ontrol Group (1.5 Hours) in Ce		Centimeters	
		Day 1	Day 2	Day 3	Day 4	Day 5	Day 7
	Total .1.5 hours						
UB 1		5079.492	5361.432	11301.476	16112.744	23758.905	7858.252
UB 2		13555.472	32067.5	30016.704	52205.906	49370.742	12645.3
UB 5		9085.342	9006.585	5771.134	11519.662	12054.238	5468.874
UB 14		4583.684	2043.684	12403.074	23075.646	30627.574	8016.24
TZ 5		6119.368	4395.74	6133.846	3672.332	5039.105	3878.073
TZ 7		6082.538	10423.905	7609.078	7704.836	8321.294	6559.29
TZ 8		2921.254	3727.958	8463.026	4412.742	10260.838	8408.924
TZ 12		1735.328	9473.184	10142.982	13075.158	12227.56	6294.628
TZ 14		9343.898	7122.16	7644.13	8065.262	9029.7	7487.158
TZ 16		5984.24	10574.528	6220.206	12208.002	5038.852	4603.73
	AVG	6449.1616	9419.7678	10570.5656	15205.329	16573.881	7122.0584
	SEM	1086.86888	2685.80284	2274.61414	4491.61643	4465.8888	776.299918

Data from the TruScan Photobeam Activity System was obtained and presented as mean ± standard error of the mean (SEM).

Figure 9: Frozen rats brain of the experiment. Figure 10: TruScan Photobeam Activity System Data spreadsheet with statistical analysis.

Results – Training Session

Figure 11: The effects of vehicle and PKC inhibitor infusions directly to the NAc shell during five consecutive days in the total move time of rats in the locomotor activity chamber.

Results – Training Session

Figure 12: The effects of vehicle and PKC inhibitor infusions directly to the NAc shell during five consecutive days in the ambulatory distance of rats in the locomotor activity chamber.

Results – Training Session

Figure 13: The effects of vehicle and PKC inhibitor infusions directly to the NAc shell during five consecutive days in the total movement of rats in the locomotor activity chamber.

Results – Testing Session

Figure 14 (left): The total move time of rats in the locomotor activity chamber with the previous environment cues, but without any pre-treatment; neither vehicle or PKC inhibitor.

Figure 15 (right): The ambulatory distance of rats in the locomotor activity chamber with the previous environment cues, but without any pre-treatment; neither vehicle or PKC inhibitor.

Discussion

This preliminary data suggests a possible role of PKC γ on acquiring the association between an environment and cocaine Use.

Further experiments are needed to fully characterize these findings.

- Briand, L.A, Kimmey, B.A., Ortinski, P.I., Huganir, R.L., Pierce, R.C. (2014). Disruption of Glutamate Receptor-Interacting Protein in Nucleus Accumbens Enhances Vulnerability to Cocaine Relapse. Neuropsychopharmacology. 39, 759-769.
- Howell, K.K., Monk, B.R., Carmack, S.A., Mrowczynski, O.D., Clark, R.E., Anagnostaras, S.G. (2014). Inhibition of PKC disrupts addiction-related memory. Frontiers in Behavioral Neuroscience. 8(70)
- Kenny, P., Markou, A. (2004). The ups and downs of addiction: role of metabotropic glutamate receptor.
 Trends Pharmacological Science 25:265-272
- Koob, G.F., Sanna, P.P., Bloom, F.E. (1998). Neuroscience of Addiction. Neuron, Vol. 21, 467-476.
- Meyer, J.S., Quenzer, L.F., Psychopharmacology. (2013). Drugs, the Brain, and Behavior. Sunderland, MA. Sinauer Associates.
- The Neurobiology of Drug Addiction. (2007) Section 7: Summary: addictive drugs activate the reward system via increasing dopamine neurotransmission. National Institute on Drug Abuse. NIH.
- Russo, S.J., Nestler, E.J. (2013) The brain reward circuitry in mood disorders. Nature Reviews Neuroscience 14, 609-625.
- Schmidt, H., Kimmey, B.A., Arreola, A.C., Pierce, R.C. (2015). Group I metabotropic glutamate receptormediated activation of PKC gamma in the nucleus accumbens core promotes the reinstatement of cocaine seeking. Addiction Biology, 20(2):258-296.
- Schmidt, H.D., Schassburger, R.L., Guercio, L.A., Pierce, R.C. (2013). Stimulation of mGluR5 in the Accumbens Shell Promotes Cocaine Seeking by Activating PKC Gamma. The Jornal of Neuroscience. 33(35):14160-14169.

Acknowledgments

- National Institute of Health
- University of Puerto Rico, Rio Piedras Campus
- NeuroID Program (NIH)
- José E. García-Arrarás, Ph.D., NeuroID Director
- Carmen S. Maldonado-Vlaar, Ph.D., NeurolD Co-Director, Mentor
- Luzivette Robles Cardona, Undergraduate Student
- Jean R. Geste, Graduate Student

National Institutes of Health

